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Abstract. We discuss the use of spectral methods to estimate the decay of correlations of
observables in discrete dynamical systems. Some abstract results are stated and applied to the
analysis of correlation decay for smooth and analytic observables considered on a particular
class of skew-endomorphisms of the 2-torus. General superexponential estimates to correlation
decay are also established for the algebraic automorphisms and endomorphisms-trtrss
whenever hyperbolic or purely expanding conditions occur.

0. Introduction

Decay of correlations for maps plays an important role in statistical physics, particularly
in the study of relaxation to equilibrium and in the computation of transport coefficients
for dynamical variables like actions, energy or momentum in many systems of physical
interest [1]. It also constitutes the first step in order to establish strong statistical properties
of measure preserving maps and related observables, such as the central limit theorem
and Donsker’s invariance principle [2]. Several techniques are available for the numerical
and analytical estimate of correlations. Although, in principle, applicable to any kind of
maps, numerical methods [3-5] encounter serious limitations due to the possible fast decay
of correlations, rapidly hidden by algorithmic and round-off errors, or to the necessarily
finite number of obtainable data, which might correspond to a transient behaviour and
not be representative of the actual asymptotical trend. On the other hand, the analytical
estimates and some semi-analytical approaches [6] are valid only for specific classes of
maps, satisfying additional requirements like hyperbolicity [7, 8], ‘almost hyperbolicity’ in
an appropriate sense [9, 10] and so forth. Some constraint on the choice of the observables is
also imposed. Most of the previous bounds are obtained by using the concepts of (possibly
infinite) Markov partition and symbolic dynamics [11,12] or suitable generalizations of
them [9]. Valid alternative methods have been developed only rather recently [10, 13].
There are some cases, however, where spectral techniques are particularly useful, providing
sometimes the only available results or upper bounds related more directly with the system
parameters and with the smoothness of the observables.

The present paper is precisely devoted to a digression about the use of spectral methods
for the estimate of correlation decay in dynamical systems. We will confine ourselves to
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the case of discrete-time dynamical systerfisst, B, u), which will be simply defined as

a measure preserving transformatidnacting on a probability spacg2 with probability
measureu ando-field B. By saying thatf is an observable of the dynamical system we
mean thatf is a real- or complex-valued square-integrable functiorfowith respect to

the measure.. We denote by.?(Q, BB, 1) the corresponding linear space, where sum and
multiplication by a (complex) scalar are defined pointwise and functions which coincide
u-almost everywhere not distinguished. A natural structure of inner product is introduced
by means of the integral

(hlg) = /Q A0g(x) du(x) (0.1)

for arbitrary functionsz, g € L2(Q2, B, ). The mean value of € L?(Q, B, 1) can then be
written as(1| f) by posing 1e L?(Q, B, 1) such that {x) = 1 for u-almost everyx € Q.
In many typical problemsT(, 2, B, u) satisfies a strong mixing property, so that for any two
observables, g € L%(Q, B, ) the correlation functiorC,(f, g) = (flgo T*) — (1| f)(1]g)
tends to zero as — +oo. According to the polarization identity this condition occurs if and
only if all the correlations of the fornt,(f, f) also decay to zero. Expressio@s(f, f)
are known as the autocorrelations of the observabte L?(Q2, B, 1) and they may also be
rewritten asC, (f, f) = (f|U° ) — (1] f)|? in terms of the Koopman operatéf associated
to 7, the linear unitary operator af?($2, B, u) defined by(Uf)(x) = f(T(x))Vx € L,
f € L%(Q, B, ). The basic idea which allows us to apply spectral methods to the analysis
of correlation decay is founded on a very simple characterization of strong mixing. This
states that, given an arbitrary complete orthonormal&etf L?(Q2, B, 1), a dynamical
system {7, 2, B, u) is mixing if and only if correlations between any pair of vectorsSin
converge to zero in the limi — oo [14, 15]. Under suitable conditions, information about
the rate of correlation decay for vectors of the orthonormal base can be usefully applied
to achieve estimates to the correlation decay for various classes of observables. Analogous
arguments can also be extended to purely ergodic non-mixing dynamical systems, whenever
an infinite orthonormal set of observables is given whose correlations decay suitably fast.
We prove here strong upper bounds to autocorrelations for smooth or analytic
observables which can be expanded into a Bessel series of orthorich{fal3, 1) vectors,
under the assumption that correlations of orthonormal vectors converge to zero at variously
assigned rates. Similar arguments are also applied to the classical algebraic auto- and
endomorphisms of the-torus, generalizing the results in [16] and providing, in particular,
superexponential estimates to the autocorrelations of analytic observables, instead of the
general exponential bounds already available. Finally, an illustration of the basic ideas on
which the above general results about correlation decay rest is briefly given for a class
of exact skew-endomorphisms of the 2-torus [17-20]. It is noticeable that for analytical
observables the estimated decay is much faster than for smooth ones. This result is
interesting not only from a mere mathematical point of view, since although the physical
relevance of smooth observables is certainly larger, analytical observables occur in various
physical models [21-24], but particularly for applications to particle accelerators [25, 26].
We further remark that the superexponential decay, in the cases where it is proved, would be
very difficult to detect by numerical simulations, owing to the high computational precision
needed and to the very fast convergence to zero. In fact, we are not aware of physical
models where the correlation decay for appropriate observables is satisfactorily fitted by a
superexponential law.
The plan of this paper is as follows. In section 1 we state several general results
concerning autocorrelation decay of smooth or analytic observables. Section 2 and
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relative subsections provide the application of spectral methods to algebraic auto- and
endomorphisms of the-torus, showing the superexponential decay of correlations for
analytic observables. Section 3 contains a discussion of exact skew-endomorphisms and,
finally, section 4 is devoted to some concluding remarks.

1. General results

Let O be a countable (not necessarily complete) orthonormal set(f, B, 1) and assume

that the almost everywhere constant function 1 belong®toWe consider observables

f e L%(Q, B, 1) which can be expanded into a Bessel series of vectors of the orthonormal
setO, convergence being intended with respect toiRenorm || f[> = ((f|f()¥? induced

by the scalar product. Takinif = {0,1,2,...} and Z* = N\{0}, we can prove the
following theorem 1.1. From a geometrical point of view, the interpretation of the result
is rather simple: the map is assumed to induce a transformation of the orthonormal set of
characters onto itself, so that Fourier vectors ‘mix’ in a suitable way. Conditions (1i) and
(1ii)—see below—are a formal way to specify how fast this mixing of the character set
occurs, in order that the correlations of characters decay at an appropriate rate. This is
enough to conclude that, for conveniently regular observables, tight bounds to correlations
must hold. The physical meaning of the assumptions depends, of course, on the physical
interpretation given to characters, which is in turn system dependent.

Theorem 1.1. Let O = {e;,i € N}, with ¢¢ = 1. Suppose there exists a mapping
M : N — N such thatM (0) = 0, M(i) = i impliesi = 0 andU’e; = ey, Vs, i € N.
Moreover, letM satisfy one of the following properties:
(1) M is an increasing function afe N obeying the conditiol (i) > i + 1Vi € Z*;
(1ii) there exists a constant> 1 such thatM (i) > Ai Vi € N.
Finally, let us consider observablgse L2(2, B, ) of the form f = Y 2o ciei whose
Bessel coefficients; € C tend to zero either exponentially or according to a power law:
(2i) there are constantg 8 > 0 such thatc;| < «e# Vi e N;
(2ii) there existe > 0 andB > 1/2 for which|c;| < ai Vi € Z*.
Then, by denoting withC > 0 a suitable constant:
(@) under conditions (1i) and (2i) we hayé(f, f)| < Ce#* Vs e N;
(b) conditions (1ii) and (2i) lead to the upper boui@ (£, f)| < Ce ¥ Vs e N;
(c) conditions (1ii) and (2ii) imMpYCs(f, f)] < CA P Vs e N;
(d) under conditions (1i) and (2ii):
(d1) wheneveB > 1 we have|C,(f, f)| < Cs™P Vs e Z;
(d2) for 8 = 1 there hold9C,(f, f) < Cs~tlogsVs € Zt;
(d3) if B €]1/2, 1], for everyy €]0, 28 — 1] there exists a real positive sequence
(ay 5)sen such thatlC,(f, /)| < a,, s Vs € ZT anda, ; —>,__ O. O

Proof. We preliminary write down a simple general estimate for the autocorrelations.
Owing to the continuity of the scalar product we have indeed

(fIU f) = Z cjci / ej(x)e sy (x) du(x) = Zcm,»)ci. (1.1)
i,j=0 Q i=0
The straightforward upper bound,(f, /)| < > ey leyzs iy llil becomes

> \ 1 .
Cs(f. )l Sa? )y e P 1.2)
i=1
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in the case of exponential decay of the Bessel coefficients and

Cy(f. f)|<a2i£; (1.3)
I~ R O
when a power-decay law for the same coefficients is assumed. Whenever condition (1i)
occurs it is easily proved by induction thet’ (i) > i +s Vi € Z*, s € N, and an analogous
result holds when/ obeys the bound (Lii)M*(i) > 1°i Vi, s € N.
By using M*(i) > i + s within (1.2) we get
a?e P e

|Cs(fv f)| Z —2hi _ﬁs = 1—76_2’3

and item (a) is proved. In a similar way, boun (i) > A*i puts the estimate (1.2) into
the form
2 o= B(1+1%)
2 ﬁ[l-‘r)\‘l] a”€
IC(f. NI < XI‘ = e
and provides item (b). The same inequality used within (1.3) leads to the upper bound
stated as item (c)
oo oo
IC(f OIS D i Pai PP =a® ) i72Pa P,
i=1 i=1
As for item (d), we have to discuss the estimatéf, f) < a?Y 2 i Pi+s)P. If B> 1
we can write
i<y 0t (1.4)
R R '

and consider the sequence of functionsiog Z* given by ®,(i) = s?i?@i + 5)77,
with s € N. A straightforward calculation shows that lim,., ®,() = i Vi € Z*,
whereas, uniformly os, |®,(i)| <i #Vi € Z*. Finally, Y 7°, i < +oco. By Lebesgue’s
dominated convergence theorem we deduce the existence of the limit

o0 001

B
. S
Sll)rrw;m_;i—ﬂ<+oo (1.5)

and, by denoting withC > 0 a suitable constant, the consequent boQnff, s#i—#
(i +5)~# < Ca=?Vs e N. This result, together with (1.4), provides (d1).

For g = 1 we obtain|C,(f, f)| < a?Y 2 [i(i +5)] =%~ 1Y " i~ and since
there existsC > 0 satisfying

’Z [ +Iogs} < %}Iogs Vs € ZT (1.6)
0g2 acs

formula (d2) is established. Whehe]l/2, 1] let us considee such that O< ¢ < 8. Itis
easy to verify thavi € Z* the function®; : R* — R* defined by, (s) = s#~( + s)#
takes its maximum at = i (8 — €) /e and consequently
B—¢ B—e Bq
o] * ' < (‘3 - 1) (8) L (1.7)
seLt (l + s)/3 & 18 ®

Therefore, for the seriel -, i #W;(s) we have that
o for every fixede €]0, B[ and Vi € Z* there holds lin. i #W¥;(s) = 0;
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e the upper bound below is satisfied

sﬁ—s /3 B—e P B 1
cror<(572) (5) o

uniform with respect ta and integrable with respect foc Z*, provided thatg + ¢ > 1.
By the dominated convergence theorem we deduce that.lim Y 2, i #W¥;(s) = 0.
The above conclusion is valid under the assumption that the value mftches the
inequalities O< ¢ < Band 1< B+ ¢, with 1/2 < B8 < 1. For a giveng a simple
calculation shows this happens if and onlygif— ¢ €]0, 28 — 1[. Statement (d3) follows
by posingy = B — ¢ anda, s = Y o s7i (i +s)~?. The proof is complete. O

1
< = Sup

1‘I’( )
iﬂ lﬂSEZ

A more general result is given by the following statement.

Theorem 1.2. Let O be an orthonormal set of the forfeg o = 1}U{er; :i € Zt, k€ D C
N} and suppose that there exists a mappig Z* — Z* such thatUe; ; = ¢; Yk € D

andVi € N. Moreover, letM satisfy one of the same hypotheses (1i) and (lii) stated in
theorem 1.1 and lef € L?(Q, B, 1) be any observable expressed by a series

o0
f£=> crieci +coo cki»co0 € C 1.9)

keD i=1

whose Bessel coefficients tend to zero either exponentially or according to a power law:
(21) there exista, B > 0 such thatc, ;| < a e P* vk e D,i € 77,
(2ii") for suitable constants > 0 andg > 1 there holdgc; ;| < a(k +i)"#Vk € D,
ieZr.
Then, with a suitable constagt > 0O:
(a) if conditions (1i) and (2) occur, the boundC,(f, f)| < C e holdsVs € N;
(b) when both (1ii) and (2) hold we haveC(f, f)| < Ce ¥ Vs e N;
(c) under conditions (1ii) and (2)iwe deducgC,(f, f)] < CA P Vs e N;
(d) conditions (1i) and (2i) imply that
(d1) wheneveB > 2 we get|C,(f, f)| < Cs P Vs e Z7;
(d2) for B = 2, define the normjx|,, of a vectorx € R? as x|, = max |x;|,
where x;, x, are the components of with respect to the canonical basis f.
Moreover, for eachr € Z* let Np(r) be the cardinality of the set

((k,i):keD,ieZYN{w e Z?: |w|n =r}. (1.10)

For everys e Z* we have then the inequalitie€(f, f)| < Cs~2, if there
existsn €]0, 1[ such thatN,(r) ~ r" asr — +oo, and|C(f, f)| < Cs2logs,
wheneverNp(r) ~ r asr — +o0;

(d3) if B €]1, 2[, for everyy €]0, 2(8 — 1)[ there exists a real positive sequence
(ay,x)seN such that|Cx(f» NI < ay’s(l/SV)VS eZ* anday,s —>5t00 0. O

Proof. We firstly takeC(f, f) = (fIU* f) — (fIL(If) = D ep Z?ilick,lﬂﬂ(i)ck,i and
write the general upper bound’(f, /)| < Y icp 2ot I sy lleril Vs € N. The last
inequality reduces to

o0 7 .
IC(f, Pl <a?)y Y e Phepi@ (1.11)

keD i=1
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in the case of an exponential decay of Bessel coefficients and

1
2
UM<y :(Hl)ﬂ TR (112)

keD i=1

when a power-decay law for the same coefficients is assumed.
By insertingM*(i) > i + s within (1.11) we readily achieve item (a)

_ ae? 72
ICs(f, )] < ZI(ZDZ g 26k g B2+ < o= ﬂs[l e—zﬂ] (1.13)
€ 1
whereas the use o (i) > A*i inside (1.11) leads to item (b)
_ i e L.
IC5(f, I < szDZ e kg PUtrD < q—ewy® . (1.14)
€ 1

In the case (c) an upper bound to autocorrelations is

2 o

keD i=1 keD i=1 i=1
(1.15)
the residual series being convergent because of the hypohesis.
As for item (d), inequality (1.12), together with{* (i) > i + s, gives
1
Cs(f, o? 1.16
ICo(f. NI < Zz(kﬂ)ﬁ(kﬁﬂ)ﬂ (1.16)

keD i=1

If 8 > 2 let us introduce the functioR,(k, i) = s?(k + i) (k + i + s)~# and notice that,
uniformly ons € N, |Ts(k, )| < limy_ o0 Ty (k, i) = (k +i)~# with

Z:Z:(kﬂ)'3 Z:Z:(k+z)ﬂ\z:(r+1)ﬂ <+ (1.17)

keD i=1
By dominated convergence we deduce the existence of

LD NALED D) srw (1.18)

keD i=1 keD i=1

so that the sequenck, ., > o I's(k, i) is bounded by a suitable constafife? > 0
independent or and inequality (d1) holds.
Casep = 2 is better analysed in a direct way, by means of the bound
1 771
CS ’ 2 2 T
G0 DI S X:Xj(k—i—z)z(k+z+s)2 ZZ[k+, k+l+s:| 52

keD i=1 keD i=1

(1.129)
Notice that

1 2
Fe) = ZZ[k+, k+l+s]

keD i=1

is an increasing function of € N. In particular,7(0) = 0 and by Levi’'s theorem there
exists

Jim F(s) = > Z T 1)2 (1.20)

keD i=1
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The series on the right-hand side of the above equality is not necessarily convergent, but
recalling the definition ofVp(r) we can write

o0

Np(r)
252 D _2(2 )ﬂND(r)\ZZ(Hl)ﬁ\Z ﬂND(r) (1.21)

keD i=1

and conclude that the convergencef_, Y o, (k +i)~2 depends on the asymptotical
behaviour of Np(r). If, for instance,D were finite—a somehow trivial case, reducible to
previous theorem 1.1—for everye N large enough we should havé, (r) = #D < 400
and the convergence of series (1.20) would occur if and onlyDiffE>; r# < +o00. On
having actually8 = 2, we would conclude thaf(s) < lim,_, 1 F(s) = F(4+00) < 400,
whereF (+o00) stands for the finite limit (1.20). The more interesting situation of a countable
D and Np(r) ~ r" asr — 400, for somen €]0, 1[, can be solved in the same way since
inequality F(4+o00) < +oo still holds and consequentl\C, (f, f)| < a?F(+00)s™2Vs €
Z*. If Np(r) ~ 2r(r — +o00)—and the asymptotic behaviour of, () could not be more
rapidly increasing than this, because of the trivial inequalty(r) < 2rVr € Z*—the
previous method fails due t#(4+o00) = +o0o0. To overcome this difficulty we make use of
the identity

(k+)2k+i+s)2=[(k+i) 2= (k+i+s)?[s2+2k+i)s]*

which replaced inside (1.19) gives

N N+s
1

C; . 1.22

G (f. P < ;[Z(an ; (k—i—i)z} (1.22)
By taking N > s we can rewrite the last term in (1.22) as
1 5 ] N [ s 1 N-+s 1 } 1 5 ] N k+s 1
—a° lim = | = Sa° lim - 1.23
527 No+oo g ; (k + )2 i=NX;l (k +1i)2 527 No+oo ; 5:2/@;1 i2 (1.23)
and since

lim — + lim [ } = — + — (1.24)

Notoofg G102 T K Nowe | (H kS =k =k

there will exist a constant > 0 such that
1,22 A1 1 N
G PI< e [6+;k <allogs Wz (1.25)

which completes the proof of item (d2).
Let us finally discuss the cagke]l, 2[. We preliminarily choose €]0, 8] and write

,375

< 1.26
G, (f, )] < ﬁskEZD;(HZ)ﬂ(HIH)ﬁ (1.26)
For every fixed pair §,i) let us define the functiom;; : R* — RT given by

Ari(s) = sP~¢(k +i + s)~# and compute its supremum. A trivial calculation provides
the maximums* = (k +i)(8 — ¢)/¢ € RT and whence

o B B—e e B 1
SSGZEHAM(SN < Agi(sT) = (8 - 1) (,3) k+i) (1.27)
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Consider the series in (1.26). It is straightforward to show ti@t, i) there exists
lim;_ 1 oo(k +i)# A4 (s) = 0 and that the upper bound, uniform ere N,

1 BN ey 1
wrr ol < () () wrm €29

is integrable ovelk,i) € D x Z* wheneverg + ¢ > 2. By dominated convergence we
deduce im0 Y 4cp Y2 (k+i)"P Ay (s) = 0. For any fixed8 €]1, 2[ the useful values
of ¢ are those of the interval ]2 8, B[ and therefores — ¢ €]0, 2(8 — 1)[. We simply have
to posey =B —eanda,; =Y ,.p > oq(k+i)"P A ;(s) to obtain (d3) and complete the
proof of theorem 1.2. O

Remark. It is clear that under the hypotheses of theorems 1.1 and 1.2, the case of a finite
orthonormal set trivially implies autocorrelations of any observable to be definitively zero
ass — +oo.

The conditions assumed by theorems 1.1 and 1.2 essentially mean that the Koopman
operatorU vyields a suitable rearrangement of the orthonormal(3eso that correlations
between orthonormal vectors @ can take two possible values only, either 0 or 1. These
conditions could be matched, for instance, when the dynamical syBtéias a Lebesgue
spectrum [14, 27]. A more interesting situation to be discussed is that where the aation of
does not merely reduce to a simple vector exchange and consequently all of the correlations
of vectors inO give a non-trivial contribution to the autocorrelations of the observgble
We have, in particular, the following statement.

Theorem 1.3. Let O = {¢;,i € N}, with ¢g = 1. Supposevi, j € N there existy;; > 0
and p;; €]0, 1[ such that

l{eilU’e;) — (eileo) (eole;)| < aijpj; Vs € N (1.29)

and let f be anyL?(Q2, B, 1) function expandable into a Bessel serigs= Y 2ocie of
O whose coefficients decay either exponentialty] < Ae# Vi € N, or according to a
power law,|c;| < Ai~# Vi e Z* (for some constantd, 8 > 0). Let us denote withF (i)
the functions e# andi~#, in the first and in the second case, respectively. Then:

(a) if there existsp €]0,1[ such thatp; < pV(@,j) € Z' x Z* and
fo:l a;iF(i)F(j) < +oo, the correlation decay of is exponential, with rate;

(b) if a y > 0 can be chosen for which the series

oo
> " aij exp{—y log(—log pi/)} F (i) F (j) (1.30)
ij=1
turns out to be convergent, there exists a non-negative sequenc®.z+ Satisfying
ICs(f, ) < ays™"Vs € ZT anda, ; —> 5100 0. O

Proof. ConsiderF (i) = e #. The statement follows from the inequality

o0 o0
G DI leillelapy < A2 e #0000 Vs e N (L31)
ij=1 ij=1

which immediately provides item ()C,(f, f)| < A? Yoy € a;;0° Vs € N. As for
item (b), let us rewrite (1.31) in the equivalent form

2 o0

A L
G NI Y e P57 oy (1.32)

ij=1
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notice thatVi, j € Z* there exists linL, ;o e*ﬂ“*f)a,jsypgj = 0 and consider the upper
bound
e_ﬂ(i‘*'j)ai_;sypivj < e_ﬂ(i+j)()li_i Suqs}’pfj] (133)
SEN

We have that the functio;; : R — R* defined byZ;;(s) = s”oj; tends to zero as
s — 400 and its maximum oR* is readily calculated as* = —y/logp;;. Thus

Y

* y - | i j _ —

267 = <_Iogp..) py/ " =y e (—log ). (1.34)
ij

Inequality (1.33) is then replaced by the following one, uniformson
e P ays? pl < &P oy Suds” p] < 7 €7y expi—Bi + j) — v log(—log pij)}
SERT

(1.35)

for which hypothesis (1.30) assures

o0 o0
> e P a5t ol <y e Y oy exp{—B( + j) — v log(—log pij)} < +oo.  (1.36)

ij=1 ij=1

Dominated convergence now provides JimrQo Z?le e P+ ay;s7 pf; = 0 and item (b)
follows by simply takinga, s = A%Y "7 e P+ a;;s7 py.
The proof of casd- (i) = i~# is completely analogous. O

We can specialize the general statements of theorem 1.3 to a particular situation which
will occur in the analysis of correlation decay for a certain class of mixing skew-systems—
see section 3. We have the following.

Proposition 1.4. Let ¢ : R —]0, 1] be a real function such that:
() ¢ is continuous and periodic with period 1 @9
(i) p(x) =1 if and only if x € Z;
(iii) the restriction ofe to a neighbourhood of = 0 is C*;
(iv) ¢ admits a negative second derivativexin= 0, ¢”(0) < 0.
Consider a given vectat, b) € R?\{(0, 0)} satisfying the ‘Diophantine-like’ condition

[dist(ai + bj, Z)] ™" < panp (i + )7 V(i j) € N x N\{(0, 0)} (1.37)

for some constants, ;. y..» > 0, when having defined digti +bj, Z) = Inf,cz|ai+bj —q].
Suppose thaD is the same orthonormal set of theorem 1.3 and that inequality (1.29) holds,
with the factorse;; uniformly bounded:o;; < KVi, j € N and

pij = ¢lai +bj) V(i j) € N x N\{(0, 0)}. (1.38)

Finally, let f be an observable of the forrfi = Zfio ciei, e €0.

Then, with the same notation introduced in theorem 1.3:

(a) if the Bessel coefficients; of f decrease exponentially to zero, for every> 0
there exists a non-negative sequeneg,),cz+ such thaiC(f, f)| < a,,s77 Vs € Z* and
Ays —>s—+o0 0;

(b) the same property is verified for evepy of the type O< y < (8 — 2)/(2Vap)
whenever the Bessel coefficients pfobey a power-decay law and provided tifat- 2.

T Which is certainly satisfied if, for instance,= 0 andb is Diophantine in the usual sense,\ce versa
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Proof. Owing to periodicity we can confine ourselves to consider the restrictian tof
the interval [-1/2, 1/2]. Let § €]0, 1/2[ such that the restriction af to ] — 8, 8[ is C*.
According to Peano’s version of the Taylor formut&; €] — 6, §[ we can write

px)t—1= (_(p ©

Sinceo(1l) — 0 asx — 0, for everyh;s €]0, —¢"(0)/2[ it is always possible to choose a
(possibly smaller$ such that

+ 0(1)) x? (x — 0). (1.39)

px) P —1> (—"’2(0) - h,;) x? Vx €] — 8, §] (1.40)

and simultaneously
4 0

For everyx e [—1/2,1/2]\] — 8, 8] we have insteadp(x)™* — 1 > H{l — 1, where
H; = maX{e(§) : § € [-1/2,1/2]\] — 8, 8[} certainly belongs to the interval Q[ owing
to the properties of. From (1.40) we derive the lower bound

" 0
—logg(x) > log [1+ (—“’ o m) XZ] . (1.41)
But Vz € [0, As], As < 1/2, there holds lo@L + z) > Qsz with
As
=1-_"°
0 20— A2 0

and since(—¢"(0)/2 — hs)x? < AsVx €] — 8, 8], inequality (1.41) can be replaced by

" 0
“loge(x) > 0s (—“” ; ) —m) X2

which implies

" 0 -V 1
exp[—y log(—loge(x))] < |:Q5 (—") é ) haﬂ o (1.42)
The appropriate bound for € [—1/2, 1/2]\] — 8, 8[ is much simpler
exp[—y log(—log¢(x))] < (—log Hy)~". (1.43)
Recalling (1.38), inequality (1.42) can be rewritten as
" -vY
ex -y log(~log ) < | 05 (437 s ) | st +j. 2] > (1.49)

and with the obvious definition of the constakt> 0, condition (1.37) leads to the basic
upper bound
exp{—y log(— log pi))} < R + /)27 (1.45)

valid whenever disti + bj,Z) < §, whereas (1.43) applies to any other case.
Condition (1.30) of theorem 1.3 is certainly satisfied for any choicer of 0 because
of the factor €#¢+/, which proves item (a).

In an analogous way, in order to check the convergence of (1.30F for= i we
write

0 00 2 00
Qjj - 1 KR H \2Vab
Ziﬁjﬁ exp{—y log(—log pij)} < K (—log Hs) V[Zl.ﬂ] +I;W(’+’) v,

i=1

ij=1
(1.46)
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The first term on the right-hand side of (1.46) converges since, according to our hypotheses,
B > 2. As for the latter series, on havingy > x4+ y Vx, y > 2 we can achieve the estimate

T \2VarY — AP - 2y < 2B -1 147
;iﬁjﬁ i+ ; @i 2))? i+ ) ; T )P (1.47)

convergent provided that < (8 — 2)/(2y..»), Where (8 — 2)/(2y,») > 0. As a result,
for everyy €10, (8 — 2)/(2y,.»)[ theorem 1.3 can be applied. The proof of item (b) is
complete. O

2. Algebraic automorphisms and endomorphisms of the:-torus T"™

In this section we apply spectral methods to estimating correlation decay in algebraic auto-
and endo-morphisms of thetorus. The results constitute a generalization of estimates
given in [20, 28] for the cat map [27]. They must not be simply considered as an immediate
application of the statements in section 1 (theorems 1.1 and 1.2, in particular). Nevertheless,
the general idea which allows one to prove the superexponential correlation decay of
analytical observables for the algebraic auto/endomorphisms of the torus is essentially the
same as that on which theorems 1.1 and 1.2 are based: the map induces a transformation
of the orthonormal set of characters onto itself, so that Fourier vectors ‘mix’ appropriately.
Here the situation is only a little more complicated and requires, as will be clear in the
following, a ‘pairwise’ treatment of the Fourier vectors in order to obtain the improved
estimates.

Preliminarily, we recall some basic definitions and introduce the notation which will
be used from now on. B¥" we denote the:-dimensional torus, parametrized by the unit
cube [Q1[". As usual,T" is intended to be equipped with the Lebesgue—Haar measure
w on theo-field B of Borel sets in [Q1[* and takes the structure of a probability space.
The n-torus can also be thought of as the quotient of the wiilewith respect to the
equivalence relation which defines as equivalent two elemerns afhose coordinates in
the canonical base differ by integers. In this contRktis also referred to as the covering
space of the torus. The covering map= x mod [0, 1[* associates to any € R” its only
equivalent element within the unit cube. In what follows we will find it convenient to give
R" a Banach space structure by introducing two different norms, the ordinary Euclidean
one x|l = [>/_; |x:1?]*2 and the further norny - ||z defined later.

That being stated, letM] be an arbitrary non-singulat x n matrix with integer
entries and consider the linear invertible transformatiénof R” onto itself having M]
as representative matrix with respect to the canonical base. The Tapshe n-torus
we study here are defined Wy(x) = M(x) mod [0, 1[" Vx € T" and always preserve the
Haar—-Lebesgue measure @f. [M] is known as the associated matrix Bf

Whenever M] € SL(Z, n) a simple algebraic manipulation shows tfais a one-to-one
map of T" onto itself and that the probability measyteis invariant for bothT and 7—2.

The mapT is then called an algebraic toral automorphismildnsome properties of which,
like ergodicity with respect to the invariant measurand hyperbolicity, are directly related
to the spectrum of¥/] [14, 29]. Hyperbolicity ofT onT”" is also equivalent to hyperbolicity
of the linear mapping on the covering spac®” [14]. The adjoint operaton of M

is hyperbolic onR” as well. Let us focus our attention a¥, which will be actually
involved in the estimates later. Hyperbolicity 8#f means that there exist two non-trivial
linear subspaces @”, E* and E*, and a positive constamt < 1 satisfying the following
properties:
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(l) ES @ E" = Rn,

(i) M(E*) = M~Y(E*) = E*; M(E") = M~ Y(E") = E*;

(i) k € B = |M"k < V"||k|Vm € N; k € E* = |M~"k| < v"|k||Vm € N.

E* is known as the stable space—or also the stable manifold of the only fixed point
0—whereasE" is the unstable space—or unstable manifold, respectively. Conditions (ii)
and (iii) lead to the further bounds

M ~"k|| = v k| Vke ES,meN
I M" k|| = v " |Ik|| Vk € E*,m € N.

Moreover, the decomposition (i) allows us to introduce another nori®’gr - || g, which
will be useful later. Since for every € R” there are a unique vectéy € E* and a unique
k, € E* such thatk = k,; + k,, the relationship below defines the desired norm

Iklle = ksl + Ikl (2.2)

whose equivalence with respect|to|| ensures the existence of constants, A% > 0 such
that

(2.1)

Agllklle < Ikl < Aglkl Vk € R (2.3)

according to the definition of norm equivalence. Although any ergodic algebraic
automorphism ofl” is also strong mixing, so that for > 4 there are non-hyperbolic
mixing automorphisms [30], our discussion about decay of correlations will be confined to
hyperbolic automorphisms only.

In contrast, as a simple algebraic investigation shows, the jcdegM]| = d # 1
corresponds to a-to-one map7 of T" onto itself which still preserves the Lebesgue
measure. It will be referred to as an algebraic toral endomorphism. Also in this non-
invertible hypothesig" satisfies a mixing property if and only if its associated mathi] [
has no root of unity as an eigenvalue [14]. Nevertheless, we will confine ourselves to the
following cases only:

(a) algebraic toral endomorphisms whose tangent Mais hyperbolic onR”;

(b) purely expanding algebraic toral endomorphisms.

The endomorphisnT has hyperbolic tangent map if and only if all of the eigenvalues
of the associated matrixM] lie outside the unit circle, but there are eigenvalugsand
A_ satisfying A, ] > 1 and|A_| < 1. Whenever any eigenvalue oM] has modulus
greater than 1 we say that the endomorphism is purely expanding. Of course, both classes
of endomorphisms are mixing.

2.1. Analytic observables ofi’

An observable ori” is any function of the linear spacg?(T", B, u) endowed with the
scalar product (0.1) and with the inducgdnorm || f1|2 = ((f|f))Y/2. We denote withz-b
the usual inner product of vectoss b, € R, i.e. the sumd_;_, a;b; wherea; € R stands
for the ith component of: with respect to the canonical base. Charactg(s) = €27,

k € 7', x € T", provide a complete orthonormal setif(T”, BB, 1), so that any observable
f can be expanded into the Fourier serig&) = >, cx(f)er(x), convergent with
respect to thé.2-norm. Smooth or analytic observables can be regarded as periodic functions
on the covering spacR”, of period 1 on each variable. The Dirichlet theorem ensures
the Fourier series to be convergent not only with respect td.theorm but also pointwise
on T". In both cases the regularity of implies a fast decay of Fourier coefficients as
k]| — oco. More precisely, it is well known that if is analytic onT” there are constants
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a, B > 0 such thatic,(f)| < aefIklvk ¢ 7", leading to an exponential decay of the
Fourier spectrum.

2.2. Decay of correlations for characters

The explicit computation of correlations for arbitrary observables is a formidable task from
an analytical and a numerical point of view, and can be performed successfully in some
special cases only [28, 31, 32]. The simplest result concerns correlations between characters
and is easily achieved by noting that the associated Koopman operator of an algebraic toral
auto- or endomorphism maps the lattiéé onto itself. We have in factyk € Z", x € T"

ands € N, the equality(U’e;)(x) = ex(T*(x)) = 277" which in the covering space

also readgU?e;)(x) = d27kM'x — g2nM’kx ' on having introduced the adjoint operatar

of M. As a consequence, for evelyk € Z" we get

(eh|US€k> = /[O y e7i2nh~x eizym?[f/cx d,u(x) — 5/1,1\7[% (221)

with §,, = 1 if a = b and$, , = 0 otherwise, for any:, b € Z". Equation (2.2.1) allows
to deduce estimates on the correlation decay of regular observables from the dynamical
properties of the linear mappiny on Z".

2.3. Decay of correlations for analytic observables

In this section we prove that the correlation decay of any analytic observabl®' as
superexponential. More precisely we have the following theorem.

Theorem 2.1. Let T belong to one of the following classes of algebraic toral maps:
(a) hyperbolic automorphisms &f*;
(b) endomorphisms df” with hyperbolic tangent map;
(c) purely expanding endomorphisms Bf.
Then for any analytic observablg on T" constantsA, B > 0 andR > 1 exist such
that

ICs(f, )l < AePF Vs e N (2.3.1)
with R dependent o only. |

Proof. Let f be an arbitrary observable &f ands € N. By the continuity of the scalar
product and of the (unitary) Koopman operator with respect to/theorm we can write

(fﬂﬁf7==<E:CMfkmM”[E:cuj)@}>= > enHelf)lenlUser) (2.3.2)
heZn keZr h, ke
and inserting (2.2.1) we obtain

FIUF) =D a(Pex( i = Y i (Fex(f)-

h,keZ? keZ"
On the other hand, there also holds
(FILAf) = (fleo)(eol f) = co(f)col f)

and the correlation reduces to

C(f, 1) = (FIUS )Y = (FIDUS = Y e (D)

keZm\(0}



652 F Brini and S Siboni

The fundamental upper bound to autocorrelations will then [6&(f, /)] <
> kezmvoy 1€ (Dl (f)], provided that the series on the right-hand side converges.
f is analytic its spectrum decays exponentially and the previous bound becomes

IC(f. I <a? Y e PUMkTIkD (2.3.3)
keZn\{0}

for some constants, 8 > 0, so that the behaviour ane N of objects like|k|| + || M k||
is crucial in order to establish the desired estimate€'tof, /). To this end we discuss
separately cases (a), (b) and (c).

(a) Hyperbolic automorphismsSuppose that the mdp is a hyperbolic automorphism
of T". This implies, in particular, that the linear transformatibh defines a one-to-one
mapping of the latticZ” onto itself, and so doesf. Let f be an analyticL?(T", BB, i)
function, for which therefore (2.3.3) holds, and suppose for simplicity that the indeX
of the correlationC,(f, f) is even. By introducing the change of variatle= M*/%, the
bound (2.3.3) is put into the following equivalent form:

G Pl <o 3 e pUs m i, (2.3.4)
heZm\ {0}

Recalling the definitions and notation concerning the hyperbolic structusé¢,afe obtain

1 - ~ ~ - - _
F(IIM”Z}III + MR = 1M 2hy + M2 g + 1M 2hs + M”20, |6 (2.3.5)
E

but sinceM*/2h,, M—5/2h; € E* and M*/2h,, M~5/?h, € E* we can rewrite the right-hand
side as

- ~ - ~ 1
1M 2hs || + 1M 2R, | 4 | M~ 2hs || + 1M 2R, || > 1)_“/ZFIIhII- (2.3.6)
E

As a conclusion| M*/2h||+||M~*/?h|| > v=*/?||h||A;/A}. The case of odd € N is treated
in a completely similar way, by posing = M©~Y/2k within (2.3.3), and the result reads
|METV2R)| 4+ | M=C=D2p|| > v=6=D72 | AL /AL. We now simply replace into (2.3.4)
and conclude

ICo(f, P S a?e” PN N g PEAUI=DAL A Vs e N (2.3.7)
heZ"\{0}

where | x| stands for the integer part of € R and the residual series is bounded by a
constant independent on

(b) Endomorphisms with hyperbolic tangent mafhis case can be treated like the
previous one. We only have to notice that ndv defines a transformation d@” which
is still one-to-one but not onto. As a consequend¢éZ"\{0}) c Z"\{0}. Consider, for
instance, a correlatio@;(f, f) with f analytic and even € N. By the change of variables
h = M*/?k, which is well defined, and due to the hyperbolic structuréff(2.3.3) can be
written as

ICo(f I <a? Y e PUMERIIN A, (2.3.8)
heMs/2(Z\(0})

An analogous estimate holds for ogldhy introducing the change of variable= MO=D/2,
The same bounds oM ~*/?h|| + ||M*/?h| and |MCTD/2p| 4+ ||M~6=D/2h| previously
established lead then to the inequality

ICo(f. )] S aev BN/ N @ PEBURIDAL/AL s e N, (2.3.9)
heZm\ (0}
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(c) Expanding endomorphisms Expanding endomorphism means that all of the
eigenvalues of the adjoint operattf have modulus greater than 1. Therefore, a positive
constantv < 1 will exist such that| M k| < v|k|Vk € R" or, equivalently,||Mk|| >
vk Y|k € R which implies, in particular|| Mk + [|k]| = v=* k|| +[Ik]| = W~ +1)||k].

The upper bound (2.3.3) for the autocorrelatiGy( f, f) of an analytic observabl¢
will be written, for eachs € N and with no change of variables, as

G Nl <a? 3 e b0 DI _g2g i 3 g e D (93 10)
keZm\{0} keZm\{0}
with the usual bounded residual series. The proof is complete. O

Remark. In the particular situation that the complexification of the linear operit@an be
diagonalized orC", a small modification of the previous discussion provides a more specific
characterization of the decay rates. For simplicity’s sake, let us denote with the same symbol
M the complexification ofiZ. Let T be a hyperbolic automorphism and suppose thenthat
admits the bas#&/ = {uq, us, ..., u,} of eigenvectors oi” with corresponding—possibly
complex or coinciding—eigenvalugsg, Az, ..., A,, none of which lies on the unit circle.

Any vectorh € R" will be written in a unique way as

h=Yci(hu; () eCVi=12....n (2.3.11)
i=1

and a normi| - ||, will be defined by|lA|, = Y_"_; |c;(h)|, equivalent to the Euclidean norm
| - [ on R" according toA, [|kll, < ||kl < Akl Yh € R, A/, A} > 0. We have

Ay
el (2.3.12)

where Inf[|1;[*/?+|;|~*/?] increases exponentially as— +co. An analogous calculation
holds for odds and provides

I M0 + | MR > Inf LA 172+ 121772

Y r—(s— s —s AI:
MO ) 4  p¢ “/Zhn>l?f[|xj|1/2(|x,-|/2+|xj| /2)]F”h” (2.3.13)

u

with the same conclusion. O

Since estimates (2.3.12) and (2.3.12) obviously extend to the case of an endomorphism
T with hyperbolic tangent map, the same characterization of decay rates also holds.

As for expanding endomorphisms, we can establish a very simple relation between the
computed expansion raie and the eigenvalues of the linear operator. Indeed by using
(2.3.11) we obtain

- - AT s
IM°RI+ N2 = A, AIMER| A+ (7L > Ai([lyflkjl} + 1)||h|| (2.3.14)

on having Inf|x;| > 1.

It is important to compare our estimates with those described in [16] for the cat map.
There the decay of correlations for analytic observables is characterized in a weaker way than
in the present work; correlation decay turns out to be more than exponential, whereas we can
state a more precise superexponential decay law. The systematic construction of observables
obeying a power-decay law, even if not explicitly explained here, can be performed as well
and so can be the estimate of correlation decay for smooth observables. Nevertheless,
if » denotes the eigenvalue @f with modulus greater than one, the exponential decay
rate computable for €7 observable by the spectral methods presented here turns out to



654 F Brini and S Siboni

be ¢ log|A|/2, exactly one half the valug log|A| found in [16]. That better result is

not astonishing, since it lies on a very detailed characterization of the orbitd oh

the reciprocal latticeZ?, followed by an ingenious, suitable rearrangement of such orbits.
The extension of the same arguments to other algebraic automorphisms of the 2-torus
and to higher-dimensional auto- and endo-morphisms is certainly non-trivial and fairly
cumbersome, in spite of the simplicity and generality of the present analysis. In both cases,
the spectral method reveals its capability to provide a clear relation between smoothness of
the observable and estimated decay rate.

3. Skew-endomorphisms of the 2-torus with Bernoulli base

Spectral methods discussed in section 1, and in particular the kind of estimates used in the
proof of proposition 1.4, can be fruitfully applied to a class of skew-endomorphisiok
the 2-torus defined by the relationship

T x' = pxmod][0 1] (3.1)

Yy =y+w+exmod[0 1] Y(x,y) € [0, 1[?

wherep € Z\{—1, 0, 1} ande, v € R. The 2-torus is parametrized by, [0> and endowed
with the invariant Lebesgue—Haar measuren theo-field of Borel sets. For simplicity’s
sake, we will confine ourselves to the mixing—and actually exact [18]—case, which is
known to occur if and only it € R\Q [17,19]. The (complete) orthonormal set i we
consider is the usual Fourier bagg, = €>7@+) v(a, b) € Z? as in the previous case of
toral algebraic endomorphisms. We have the following results.

Theorem 3.1. Let ¢ € R satisfy a Diophantine condition and Igt: T2 — C be analytic
on T?. ThenVy > 0 there exists a sequence, ;);en C R such that lim, ;o a,, =0
and

|Cx(f» f)| < ay,ssiy Vs € Z+. (32)
(]

Theorem 3.2. Let f : T? — C a C’” function on the 2-torus with- > 2 ande a
Diophantine number
-1

e— 2| <plgl Vg eZ\OLmel (3.3)

O

ThenVy > 0 such that > |1+ y(y. —1)] + 1 there exists a sequen@g, ;);eny C R
for which lim,_, ;~ a, s = 0 and (3.2) holds.

Sketch of the proof. The core of the proof is a full characterization of correlation decay

between vectors of the orthonormal base [19]. By choosing two arbitrary charagtgrs,

ande. 4, (a, b), (c,d) € 72, the correlationC, (e, , e..4) at times € N takes the form

sinfre + 2¢,] l—[ sin(2pg;)
e+ %(ﬁs i=0 psin(%dy)

whereg; = 2r[ed(p —1)~* — (a + ed(p — 1)~1)p~/] and the real functions — sinx/x,

x — sin(px)/(px) are also defined at = 0 by continuity.

Cs(Cap, €c.q) =8p g €T (—1)ctar —84,086,00c.0800 (3.4)
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It is then straightforward to verify that wheneveris irrational andb # 0 the above
correlations decay at an exponential rate, on having asymptotically in

|<ea,h|US€c,h>|~|:Sin<7rp eb )i|v |:psin<rr eb )i|_s. (3.5
p-1 p—1

The decay rate approaches the critical value 1 when the distanrég @f — 1) from Z tends

to zero. All of the above features combine to provide the proof, which works like that of

proposition 1.4. For a (even too) detailed proof and further analytical and numerical results

about this three-parameter family of skew-endomorphisms we refer the reader to [19, 20].
O

4. Conclusions

For hyperbolic systems, spectral methods allow one to establish a relationship between the
smoothness of the observable and its own (sometimes even superexponential) decay rate. In
contrast, general techniques of symbolic dynamics foresee only an exponential decay rate
which is independent of the smoothness of the observables and usually difficult to relate
to the parameters of the map. Symbolic dynamics techniques are based on approximations
of the observables by means of piecewise constant functions on the cylindrical sets of
the associated Markov partition. The error introduced by this first approximation is
exponentially small with respect to € N by assuming the additional requirement that
observables be #lder continuous.C*, k € Z*, or C® observables are certainlydttier
continuous, as Lipschitz continuous, but the estimate of the approximation error carries no
trace of such a regularity. As a conclusion, spectral techniques, even if by paying the price
of a lesser generality, offer the twofold advantage of a rather strict relation between the
estimated decay rate and the smoothness of the observables, on the one hand, and between
the decay rate and the system parameters on the other.

As for non-hyperbolic systems, a domain where general methods of symbolic dynamics
are not available, spectral techniques can also provide quite satisfactory estimates to
correlation decay of analytic or sufficiently smooth observables.
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