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Abstract. We discuss the use of spectral methods to estimate the decay of correlations of
observables in discrete dynamical systems. Some abstract results are stated and applied to the
analysis of correlation decay for smooth and analytic observables considered on a particular
class of skew-endomorphisms of the 2-torus. General superexponential estimates to correlation
decay are also established for the algebraic automorphisms and endomorphisms of then-torus,
whenever hyperbolic or purely expanding conditions occur.

0. Introduction

Decay of correlations for maps plays an important role in statistical physics, particularly
in the study of relaxation to equilibrium and in the computation of transport coefficients
for dynamical variables like actions, energy or momentum in many systems of physical
interest [1]. It also constitutes the first step in order to establish strong statistical properties
of measure preserving maps and related observables, such as the central limit theorem
and Donsker’s invariance principle [2]. Several techniques are available for the numerical
and analytical estimate of correlations. Although, in principle, applicable to any kind of
maps, numerical methods [3–5] encounter serious limitations due to the possible fast decay
of correlations, rapidly hidden by algorithmic and round-off errors, or to the necessarily
finite number of obtainable data, which might correspond to a transient behaviour and
not be representative of the actual asymptotical trend. On the other hand, the analytical
estimates and some semi-analytical approaches [6] are valid only for specific classes of
maps, satisfying additional requirements like hyperbolicity [7, 8], ‘almost hyperbolicity’ in
an appropriate sense [9, 10] and so forth. Some constraint on the choice of the observables is
also imposed. Most of the previous bounds are obtained by using the concepts of (possibly
infinite) Markov partition and symbolic dynamics [11, 12] or suitable generalizations of
them [9]. Valid alternative methods have been developed only rather recently [10, 13].
There are some cases, however, where spectral techniques are particularly useful, providing
sometimes the only available results or upper bounds related more directly with the system
parameters and with the smoothness of the observables.

The present paper is precisely devoted to a digression about the use of spectral methods
for the estimate of correlation decay in dynamical systems. We will confine ourselves to
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the case of discrete-time dynamical systems (T ,�,B, µ), which will be simply defined as
a measure preserving transformationT acting on a probability space� with probability
measureµ andσ -field B. By saying thatf is an observable of the dynamical system we
mean thatf is a real- or complex-valued square-integrable function on� with respect to
the measureµ. We denote byL2(�,B, µ) the corresponding linear space, where sum and
multiplication by a (complex) scalar are defined pointwise and functions which coincide
µ-almost everywhere not distinguished. A natural structure of inner product is introduced
by means of the integral

〈h|g〉 =
∫
�

h(x)g(x) dµ(x) (0.1)

for arbitrary functionsh, g ∈ L2(�,B, µ). The mean value off ∈ L2(�,B, µ) can then be
written as〈1|f 〉 by posing 1∈ L2(�,B, µ) such that 1(x) = 1 for µ-almost everyx ∈ �.
In many typical problems (T ,�,B, µ) satisfies a strong mixing property, so that for any two
observablesf, g ∈ L2(�,B, µ) the correlation functionCs(f, g) = 〈f |g ◦T s〉− 〈1|f 〉〈1|g〉
tends to zero ass →+∞. According to the polarization identity this condition occurs if and
only if all the correlations of the formCs(f, f ) also decay to zero. ExpressionsCs(f, f )
are known as the autocorrelations of the observablef ∈ L2(�,B, µ) and they may also be
rewritten asCs(f, f ) = 〈f |Usf 〉−|〈1|f 〉|2 in terms of the Koopman operatorU associated
to T , the linear unitary operator ofL2(�,B, µ) defined by(Uf )(x) = f (T (x)) ∀x ∈ �,
f ∈ L2(�,B, µ). The basic idea which allows us to apply spectral methods to the analysis
of correlation decay is founded on a very simple characterization of strong mixing. This
states that, given an arbitrary complete orthonormal setS of L2(�,B, µ), a dynamical
system (T ,�,B, µ) is mixing if and only if correlations between any pair of vectors inS
converge to zero in the limits →∞ [14, 15]. Under suitable conditions, information about
the rate of correlation decay for vectors of the orthonormal base can be usefully applied
to achieve estimates to the correlation decay for various classes of observables. Analogous
arguments can also be extended to purely ergodic non-mixing dynamical systems, whenever
an infinite orthonormal set of observables is given whose correlations decay suitably fast.

We prove here strong upper bounds to autocorrelations for smooth or analytic
observables which can be expanded into a Bessel series of orthonormalL2(�,B, µ) vectors,
under the assumption that correlations of orthonormal vectors converge to zero at variously
assigned rates. Similar arguments are also applied to the classical algebraic auto- and
endomorphisms of then-torus, generalizing the results in [16] and providing, in particular,
superexponential estimates to the autocorrelations of analytic observables, instead of the
general exponential bounds already available. Finally, an illustration of the basic ideas on
which the above general results about correlation decay rest is briefly given for a class
of exact skew-endomorphisms of the 2-torus [17–20]. It is noticeable that for analytical
observables the estimated decay is much faster than for smooth ones. This result is
interesting not only from a mere mathematical point of view, since although the physical
relevance of smooth observables is certainly larger, analytical observables occur in various
physical models [21–24], but particularly for applications to particle accelerators [25, 26].
We further remark that the superexponential decay, in the cases where it is proved, would be
very difficult to detect by numerical simulations, owing to the high computational precision
needed and to the very fast convergence to zero. In fact, we are not aware of physical
models where the correlation decay for appropriate observables is satisfactorily fitted by a
superexponential law.

The plan of this paper is as follows. In section 1 we state several general results
concerning autocorrelation decay of smooth or analytic observables. Section 2 and
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relative subsections provide the application of spectral methods to algebraic auto- and
endomorphisms of then-torus, showing the superexponential decay of correlations for
analytic observables. Section 3 contains a discussion of exact skew-endomorphisms and,
finally, section 4 is devoted to some concluding remarks.

1. General results

LetO be a countable (not necessarily complete) orthonormal set inL2(�,B, µ) and assume
that the almost everywhere constant function 1 belongs toO. We consider observables
f ∈ L2(�,B, µ) which can be expanded into a Bessel series of vectors of the orthonormal
setO, convergence being intended with respect to theL2-norm‖f ‖2 = (〈f |f 〈)1/2 induced
by the scalar product. TakingN = {0, 1, 2, . . .} and Z+ = N\{0}, we can prove the
following theorem 1.1. From a geometrical point of view, the interpretation of the result
is rather simple: the map is assumed to induce a transformation of the orthonormal set of
characters onto itself, so that Fourier vectors ‘mix’ in a suitable way. Conditions (1i) and
(1ii)—see below—are a formal way to specify how fast this mixing of the character set
occurs, in order that the correlations of characters decay at an appropriate rate. This is
enough to conclude that, for conveniently regular observables, tight bounds to correlations
must hold. The physical meaning of the assumptions depends, of course, on the physical
interpretation given to characters, which is in turn system dependent.

Theorem 1.1. Let O = {ei, i ∈ N}, with e0 = 1. Suppose there exists a mapping
M̃ : N −→ N such thatM̃(0) = 0, M̃(i) = i implies i = 0 andUsei = eM̃s(i), ∀s, i ∈ N.

Moreover, letM̃ satisfy one of the following properties:
(1i) M̃ is an increasing function ofi ∈ N obeying the conditionM̃(i) > i + 1∀i ∈ Z+;
(1ii) there exists a constantλ > 1 such thatM̃(i) > λi ∀i ∈ N.
Finally, let us consider observablesf ∈ L2(�,B, µ) of the formf =∑∞i=0 ciei whose

Bessel coefficientsci ∈ C tend to zero either exponentially or according to a power law:
(2i) there are constantsα, β > 0 such that|ci | 6 α e−βi ∀i ∈ N;
(2ii) there existα > 0 andβ > 1/2 for which |ci | 6 αi−β ∀i ∈ Z+.
Then, by denoting withC > 0 a suitable constant:
(a) under conditions (1i) and (2i) we have|Cs(f, f )| 6 Ce−βs ∀s ∈ N;
(b) conditions (1ii) and (2i) lead to the upper bound|Cs(f, f )| 6 Ce−βλ

s ∀s ∈ N;
(c) conditions (1ii) and (2ii) imply|Cs(f, f )| 6 Cλ−βs ∀s ∈ N;
(d) under conditions (1i) and (2ii):

(d1) wheneverβ > 1 we have|Cs(f, f )| 6 Cs−β ∀s ∈ Z+;
(d2) for β = 1 there holds|Cs(f, f ) 6 Cs−1 logs ∀s ∈ Z+;
(d3) if β ∈]1/2, 1[, for everyγ ∈]0, 2β − 1[ there exists a real positive sequence
(aγ,s)s∈N such that|Cs(f, f )| 6 aγ,s s−γ ∀s ∈ Z+ andaγ,s −→s→∞ 0. �

Proof. We preliminary write down a simple general estimate for the autocorrelations.
Owing to the continuity of the scalar product we have indeed

〈f |Usf 〉 =
∞∑

i,j=0

cj ci

∫
�

ej (x)eM̃s(i)(x) dµ(x) =
∞∑
i=0

cM̃s(i)ci . (1.1)

The straightforward upper bound|Cs(f, f )| 6
∑∞

i=1 |cM̃s(i)‖ci | becomes

|Cs(f, f )| 6 α2
∞∑
i=1

e−β[i+M̃s (i)] (1.2)
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in the case of exponential decay of the Bessel coefficients and

|Cs(f, f )| 6 α2
∞∑
i=1

1

iβ

1

[M̃s(i)]β
(1.3)

when a power-decay law for the same coefficients is assumed. Whenever condition (1i)
occurs it is easily proved by induction thatM̃s(i) > i+ s ∀i ∈ Z+, s ∈ N, and an analogous
result holds whenM̃ obeys the bound (1ii):M̃s(i) > λsi ∀i, s ∈ N.

By usingM̃s(i) > i + s within (1.2) we get

|Cs(f, f )| 6 α2
∞∑
i=1

e−2βi e−βs = α2 e−βs e−2β

1− e−2β

and item (a) is proved. In a similar way, bound̃Ms(i) > λsi puts the estimate (1.2) into
the form

|Cs(f, f )| 6 α2
∞∑
i=1

e−β[i+λs i] = α2 e−β(1+λ
s)

1− e−β(1+λs)

and provides item (b). The same inequality used within (1.3) leads to the upper bound
stated as item (c)

|Cs(f, f )| 6
∞∑
i=1

αi−βαi−βλ−βs = α2
∞∑
i=1

i−2βλ−βs .

As for item (d), we have to discuss the estimateCs(f, f ) 6 α2∑∞
i=1 i

−β(i+ s)−β . If β > 1
we can write

|Cs(f, f )| 6 α2
∞∑
i=1

sβ

iβ(i + s)β
1

sβ
(1.4)

and consider the sequence of functions oni ∈ Z+ given by 8s(i) = sβi−β(i + s)−β ,
with s ∈ N. A straightforward calculation shows that lims→+∞8s(i) = i−β ∀i ∈ Z+,
whereas, uniformly ons, |8s(i)| 6 i−β ∀i ∈ Z+. Finally,

∑∞
i=1 i

−β < +∞. By Lebesgue’s
dominated convergence theorem we deduce the existence of the limit

lim
s→+∞

∞∑
i=1

sβ

iβ(i + s)β =
∞∑
i=1

1

iβ
< +∞ (1.5)

and, by denoting withC > 0 a suitable constant, the consequent bound
∑∞

i=1 s
βi−β

(i + s)−β 6 Cα−2 ∀s ∈ N. This result, together with (1.4), provides (d1).
For β = 1 we obtain|Cs(f, f )| 6 α2∑∞

i=1[i(i + s)]−1 = α2s−1∑s
i=1 i

−1 and since
there existsC > 0 satisfying

1

s

s∑
i=1

1

i
6 1

s

[
2+ 1

log 2
logs

]
6 C

α2

1

s
logs ∀s ∈ Z+ (1.6)

formula (d2) is established. Whenβ ∈]1/2, 1[ let us considerε such that 0< ε < β. It is
easy to verify that∀i ∈ Z+ the function9i : R+ → R+ defined by9i(s) = sβ−ε(i + s)−β
takes its maximum ats = i(β − ε)/ε and consequently

Sup
s∈Z+

∣∣∣∣ sβ−ε

(i + s)β
∣∣∣∣ 6 (βε − 1

)β−ε(
ε

β

)β 1

iε
. (1.7)

Therefore, for the series
∑∞

i=1 i
−β9i(s) we have that

• for every fixedε ∈]0, β[ and∀i ∈ Z+ there holds lims→+∞ i−β9i(s) = 0;
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• the upper bound below is satisfied∣∣∣∣ 1

iβ
9i(s)

∣∣∣∣ 6 1

iβ
Sup
s∈Z+

∣∣∣∣ sβ−ε

(i + s)β
∣∣∣∣ 6 (βε − 1

)β−ε(
ε

β

)β 1

iβ+ε
(1.8)

uniform with respect tos and integrable with respect toi ∈ Z+, provided thatβ + ε > 1.
By the dominated convergence theorem we deduce that lims→+∞

∑∞
i=1 i

−β9i(s) = 0.
The above conclusion is valid under the assumption that the value ofε matches the
inequalities 0< ε < β and 1< β + ε, with 1/2 < β < 1. For a givenβ a simple
calculation shows this happens if and only ifβ − ε ∈]0, 2β − 1[. Statement (d3) follows
by posingγ = β − ε andaγ,s =

∑∞
i=1 s

γ i−β(i + s)−β . The proof is complete. �

A more general result is given by the following statement.

Theorem 1.2. LetO be an orthonormal set of the form{e0,0 = 1}∪{ek,i : i ∈ Z+, k ∈ D ⊆
N} and suppose that there exists a mappingM̃ : Z+ → Z+ such thatUek,i = ek,M̃(i) ∀k ∈ D
and∀i ∈ N. Moreover, letM̃ satisfy one of the same hypotheses (1i) and (1ii) stated in
theorem 1.1 and letf ∈ L2(�,B, µ) be any observable expressed by a series

f =
∑
k∈D

∞∑
i=1

ck,iek,i + c0,0 ck,i , c0,0 ∈ C (1.9)

whose Bessel coefficients tend to zero either exponentially or according to a power law:
(2i′) there existα, β > 0 such that|ck,i | 6 α e−β(k+i) ∀k ∈ D, i ∈ Z+;
(2ii ′) for suitable constantsα > 0 andβ > 1 there holds|ck,i | 6 α(k + i)−β ∀k ∈ D,

i ∈ Z+.
Then, with a suitable constantC > 0:
(a) if conditions (1i) and (2i′) occur, the bound|Cs(f, f )| 6 C e−βs holds∀s ∈ N;
(b) when both (1ii) and (2i′) hold we have|Cs(f, f )| 6 C e−βλ

s ∀s ∈ N;
(c) under conditions (1ii) and (2ii′) we deduce|Cs(f, f )| 6 Cλ−βs ∀s ∈ N;
(d) conditions (1i) and (2ii′) imply that

(d1) wheneverβ > 2 we get|Cs(f, f )| 6 Cs−β ∀s ∈ Z+;
(d2) for β = 2, define the norm‖x‖m of a vectorx ∈ R2 as ‖x‖m = maxi |xi |,
wherex1, x2 are the components ofx with respect to the canonical basis inR2.
Moreover, for eachr ∈ Z+ let ND(r) be the cardinality of the set

{(k, i) : k ∈ D, i ∈ Z+} ∩ {w ∈ Z2 : ‖w‖m = r}. (1.10)

For every s ∈ Z+ we have then the inequalities|Cs(f, f )| 6 C s−2, if there
existsη ∈]0, 1[ such thatND(r) ∼ rη as r → +∞, and |Cs(f, f )| 6 C s−2 logs,
wheneverND(r) ∼ r asr →+∞;
(d3) if β ∈]1, 2[, for everyγ ∈]0, 2(β − 1)[ there exists a real positive sequence
(aγ,s)s∈N such that|Cs(f, f )| 6 aγ,s(1/sγ ) ∀s ∈ Z+ andaγ,s −→s→+∞ 0. �

Proof. We firstly takeCs(f, f ) = 〈f |Usf 〉 − 〈f |1〉〈1|f 〉 = ∑
k∈D

∑∞
i=1 ck,M̃s (i)ck,i and

write the general upper bound|Cs(f, f )| 6
∑

k∈D
∑∞

i=1 |ck,M̃s (i)||ck,i | ∀s ∈ N. The last
inequality reduces to

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

e−2βk e−β(i+M̃
s (i)) (1.11)
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in the case of an exponential decay of Bessel coefficients and

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

1

(k + i)β
1

(k + M̃s(i))β
(1.12)

when a power-decay law for the same coefficients is assumed.
By insertingM̃s(i) > i + s within (1.11) we readily achieve item (a)

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

e−2βk e−β(2i+s) 6 e−βs
[
α e−β

1− e−2β

]2

(1.13)

whereas the use of̃Ms(i) > λsi inside (1.11) leads to item (b)

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

e−2βk e−β(i+λ
s i) 6 α2 e−β

(1− e−2β)2
e−βλ

s

. (1.14)

In the case (c) an upper bound to autocorrelations is

|Cs(f, f )| 6
∑
k∈D

∞∑
i=1

α2

(k + i)β(k + λsi)β 6
∑
k∈D

∞∑
i=1

α2

(k + 1)βiβ
1

λβs
6
[ ∞∑
i=1

α

iβ

]2 1

λβs

(1.15)

the residual series being convergent because of the hypothesisβ > 1.
As for item (d), inequality (1.12), together with̃Ms(i) > i + s, gives

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

1

(k + i)β
1

(k + i + s)β . (1.16)

If β > 2 let us introduce the function0s(k, i) = sβ(k + i)−β(k + i + s)−β and notice that,
uniformly on s ∈ N, |0s(k, i)| 6 lims→+∞ 0s(k, i) = (k + i)−β with∑

k∈D

∞∑
i=1

1

(k + i)β 6
∞∑
k=0

∞∑
i=1

1

(k + i)β 6
∞∑
r=1

2r

(r + 1)β
< +∞. (1.17)

By dominated convergence we deduce the existence of

lim
s→+∞

∑
k∈D

∞∑
i=1

0s(k, i) =
∑
k∈D

∞∑
i=1

1

(k + i)β < +∞ (1.18)

so that the sequence
∑

k∈D
∑∞

i=10s(k, i) is bounded by a suitable constantC/α2 > 0
independent ons and inequality (d1) holds.

Caseβ = 2 is better analysed in a direct way, by means of the bound

|Cs(f, f )| 6 α2
∑
k∈D

∞∑
i=1

1

(k + i)2(k + i + s)2 = α
2
∑
k∈D

∞∑
i=1

[
1

k + i −
1

k + i + s
]2 1

s2
.

(1.19)

Notice that

F(s) =
∑
k∈D

∞∑
i=1

[
1

k + i −
1

k + i + s
]2

is an increasing function ofs ∈ N. In particular,F(0) = 0 and by Levi’s theorem there
exists

lim
s→+∞F(s) =

∑
k∈D

∞∑
i=1

1

(k + i)2 . (1.20)
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The series on the right-hand side of the above equality is not necessarily convergent, but
recalling the definition ofND(r) we can write

1

2β

∞∑
r=1

ND(r)

rβ
=
∞∑
r=1

1

(2r)β
ND(r) 6

∑
k∈D

∞∑
i=1

1

(k + i)β 6
∞∑
r=1

1

rβ
ND(r) (1.21)

and conclude that the convergence of
∑

k∈D
∑∞

i=1(k + i)−2 depends on the asymptotical
behaviour ofND(r). If, for instance,D were finite—a somehow trivial case, reducible to
previous theorem 1.1—for everyr ∈ N large enough we should haveND(r) = #D < +∞
and the convergence of series (1.20) would occur if and only if #D

∑∞
r=1 r

−β < +∞. On
having actuallyβ = 2, we would conclude thatF(s) 6 lims→+∞ F(s) = F(+∞) < +∞,
whereF(+∞) stands for the finite limit (1.20). The more interesting situation of a countable
D andND(r) ∼ rη as r → +∞, for someη ∈]0, 1[, can be solved in the same way since
inequalityF(+∞) < +∞ still holds and consequently|Cs(f, f )| 6 α2F(+∞)s−2 ∀s ∈
Z+. If ND(r) ∼ 2r(r →+∞)—and the asymptotic behaviour ofND(r) could not be more
rapidly increasing than this, because of the trivial inequalityND(r) 6 2r ∀r ∈ Z+—the
previous method fails due toF(+∞) = +∞. To overcome this difficulty we make use of
the identity

(k + i)−2(k + i + s)−2 = [(k + i)−2− (k + i + s)−2][s2+ 2(k + i)s]−1

which replaced inside (1.19) gives

|Cs(f, f )| 6 α2

s2
lim

N→+∞

N∑
k=0

[ N∑
i=1

1

(k + i)2 −
N+s∑
i=1+s

1

(k + i)2
]
. (1.22)

By takingN > s we can rewrite the last term in (1.22) as

1

s2
α2 lim

N→+∞

N∑
k=0

[ s∑
i=1

1

(k + i)2 −
N+s∑
i=N+1

1

(k + i)2
]
= 1

s2
α2 lim

N→+∞

N∑
k=0

k+s∑
i=k+1

1

i2
(1.23)

and since

lim
N→+∞

N∑
k=0

k+s∑
i=k+1

1

i2
6
∞∑
k=1

1

k2
+ lim

N→+∞

[ s−1∑
k=1

1

k
−

s+N∑
k=2+N

1

k

]
=
∞∑
k=1

1

k2
+

s−1∑
k=1

1

k
(1.24)

there will exist a constantA > 0 such that

|Cs(f, f )| 6 1

s2
α2

[
π2

6
+

s−1∑
k=1

1

k

]
6 A 1

s2
logs ∀s ∈ Z+ (1.25)

which completes the proof of item (d2).
Let us finally discuss the caseβ ∈]1, 2[. We preliminarily chooseε ∈]0, β[ and write

|Cs(f, f )| 6 α2

sβ−ε
∑
k∈D

∞∑
i=1

1

(k + i)β
sβ−ε

(k + i + s)β . (1.26)

For every fixed pair (k, i) let us define the function1k,i : R+ → R+ given by
1k,i(s) = sβ−ε(k + i + s)−β and compute its supremum. A trivial calculation provides
the maximums∗ = (k + i)(β − ε)/ε ∈ R+ and whence

Sup
s∈Z+
|1k,i(s)| 6 1k,i(s

∗) =
(
β

ε
− 1

)β−ε (
ε

β

)β 1

(k + i)ε . (1.27)
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Consider the series in (1.26). It is straightforward to show that∀(k, i) there exists
lims→+∞(k + i)−β1k,i(s) = 0 and that the upper bound, uniform ons ∈ N,∣∣∣∣ 1

(k + i)β 1k,i(s)

∣∣∣∣ 6 (βε − 1

)β−ε (
ε

β

)β 1

(k + i)β+ε (1.28)

is integrable over(k, i) ∈ D × Z+ wheneverβ + ε > 2. By dominated convergence we
deduce lims→+∞

∑
k∈D

∑∞
i=1(k+i)−β1k,i(s) = 0. For any fixedβ ∈]1, 2[ the useful values

of ε are those of the interval ]2−β, β[ and thereforeβ− ε ∈]0, 2(β−1)[. We simply have
to poseγ = β − ε andaγ,s =

∑
k∈D

∑∞
i=1(k+ i)−β1k,i(s) to obtain (d3) and complete the

proof of theorem 1.2. �

Remark. It is clear that under the hypotheses of theorems 1.1 and 1.2, the case of a finite
orthonormal set trivially implies autocorrelations of any observable to be definitively zero
ass →+∞.

The conditions assumed by theorems 1.1 and 1.2 essentially mean that the Koopman
operatorU yields a suitable rearrangement of the orthonormal setO, so that correlations
between orthonormal vectors inO can take two possible values only, either 0 or 1. These
conditions could be matched, for instance, when the dynamical systemT has a Lebesgue
spectrum [14, 27]. A more interesting situation to be discussed is that where the action ofU

does not merely reduce to a simple vector exchange and consequently all of the correlations
of vectors inO give a non-trivial contribution to the autocorrelations of the observablef .
We have, in particular, the following statement.

Theorem 1.3. Let O = {ei, i ∈ N}, with e0 = 1. Suppose∀i, j ∈ N there existαij > 0
andρij ∈]0, 1[ such that

|〈ei |Usej 〉 − 〈ei |e0〉〈e0|ej 〉| 6 αijρsij ∀s ∈ N (1.29)

and letf be anyL2(�,B, µ) function expandable into a Bessel seriesf = ∑∞i=0 ciei of
O whose coefficients decay either exponentially,|ci | 6 A e−βi ∀i ∈ N, or according to a
power law,|ci | 6 Ai−β ∀i ∈ Z+ (for some constantsA, β > 0). Let us denote withF(i)
the functions e−βi and i−β , in the first and in the second case, respectively. Then:

(a) if there exists ρ ∈]0, 1[ such that ρij 6 ρ ∀(i, j) ∈ Z+ × Z+ and∑∞
ij=1 αijF (i)F (j) < +∞, the correlation decay off is exponential, with rateρ;

(b) if a γ > 0 can be chosen for which the series
∞∑
ij=1

αij exp{−γ log(− logρij )}F(i)F (j) (1.30)

turns out to be convergent, there exists a non-negative sequence(aγ,s)s∈Z+ satisfying
|Cs(f, f )| 6 aγ,ss−γ ∀s ∈ Z+ andaγ,s −→s→+∞ 0. �

Proof. ConsiderF(i) = e−βi . The statement follows from the inequality

|Cs(f, f )| 6
∞∑
ij=1

|ci‖cj |αijρsij 6 A2
∞∑
ij=1

e−β(i+j)αijρsij ∀s ∈ N (1.31)

which immediately provides item (a):|Cs(f, f )| 6 A2∑∞
ij=1 e−β(i+j)αijρs ∀s ∈ N. As for

item (b), let us rewrite (1.31) in the equivalent form

|Cs(f, f )| 6 A2

sγ

∞∑
ij=1

e−β(i+j)sγ ρsij (1.32)
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notice that∀i, j ∈ Z+ there exists lims→+∞ e−β(i+j)αij sγ ρsij = 0 and consider the upper
bound

e−β(i+j)αij sγ ρsij 6 e−β(i+j)αij Sup
s∈N

[sγ ρsij ]. (1.33)

We have that the functionZij : R+ −→ R+ defined byZij (s) = sγ ρsij tends to zero as
s →+∞ and its maximum onR+ is readily calculated ass∗ = −γ / logρij . Thus

Zij (s∗) =
(
− γ

logρij

)γ
ρ
−γ / logρij
ij = γ γ e−γ (− logρij )

−γ . (1.34)

Inequality (1.33) is then replaced by the following one, uniform ons,

e−β(i+j)αij sγ ρsij 6 e−β(i+j)αij Sup
s∈R+

[sγ ρsij ] 6 γ γ e−γ αij exp{−β(i + j)− γ log(− logρij )}
(1.35)

for which hypothesis (1.30) assures
∞∑
ij=1

e−β(i+j)αij sγ ρsij 6 γ γ e−γ
∞∑
ij=1

αij exp{−β(i + j)− γ log(− logρij )} < +∞. (1.36)

Dominated convergence now provides lims→+∞
∑∞

ij=1 e−β(i+j)αij sγ ρsij = 0 and item (b)
follows by simply takingaγ,s = A2∑∞

ij=1 e−β(i+j)αij sγ ρsij .
The proof of caseF(i) = i−β is completely analogous. �

We can specialize the general statements of theorem 1.3 to a particular situation which
will occur in the analysis of correlation decay for a certain class of mixing skew-systems—
see section 3. We have the following.

Proposition 1.4. Let ϕ : R −→]0, 1] be a real function such that:
(i) ϕ is continuous and periodic with period 1 onR;
(ii) ϕ(x) = 1 if and only if x ∈ Z;
(iii) the restriction ofϕ to a neighbourhood ofx = 0 is C1;
(iv) ϕ admits a negative second derivative inx = 0, ϕ′′(0) < 0.
Consider a given vector(a, b) ∈ R2\{(0, 0)} satisfying the ‘Diophantine-like’ condition†

[dist(ai + bj,Z)]−1 6 µa,b(i + j)γa,b ∀(i, j) ∈ N× N\{(0, 0)} (1.37)

for some constantsµa,b, γa,b > 0, when having defined dist(ai+bj,Z) = Infq∈Z|ai+bj−q|.
Suppose thatO is the same orthonormal set of theorem 1.3 and that inequality (1.29) holds,
with the factorsαij uniformly bounded:αij 6 K ∀i, j ∈ N and

ρij = ϕ(ai + bj) ∀(i, j) ∈ N× N\{(0, 0)}. (1.38)

Finally, let f be an observable of the formf =∑∞i=0 ciei , ei ∈ O.
Then, with the same notation introduced in theorem 1.3:
(a) if the Bessel coefficientsci of f decrease exponentially to zero, for everyγ > 0

there exists a non-negative sequence(aγ,s)s∈Z+ such that|Cs(f, f )| 6 aγ,ss−γ ∀s ∈ Z+ and
aγ,s −→s→+∞ 0;

(b) the same property is verified for everyγ of the type 0< γ < (β − 2)/(2γa,b)
whenever the Bessel coefficients off obey a power-decay law and provided thatβ > 2.

† Which is certainly satisfied if, for instance,a = 0 andb is Diophantine in the usual sense, orvice versa.
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Proof. Owing to periodicity we can confine ourselves to consider the restriction ofϕ to
the interval [−1/2, 1/2]. Let δ ∈]0, 1/2[ such that the restriction ofϕ to ] − δ, δ[ is C1.
According to Peano’s version of the Taylor formula,∀x ∈] − δ, δ[ we can write

ϕ(x)−1− 1=
(
−ϕ
′′(0)
2
+ o(1)

)
x2 (x → 0). (1.39)

Sinceo(1) → 0 asx → 0, for everyhδ ∈]0,−ϕ′′(0)/2[ it is always possible to choose a
(possibly smaller)δ such that

ϕ(x)−1− 1>
(
−ϕ
′′(0)
2
− hδ

)
x2 ∀x ∈] − δ, δ[ (1.40)

and simultaneously

1δ =
(
−ϕ
′′(0)
2
− hδ

)
δ2 < 1/2.

For every x ∈ [−1/2, 1/2]\] − δ, δ[ we have insteadϕ(x)−1 − 1 > H−1
δ − 1, where

Hδ = max{ϕ(ξ) : ξ ∈ [−1/2, 1/2]\] − δ, δ[} certainly belongs to the interval ]0, 1[ owing
to the properties ofϕ. From (1.40) we derive the lower bound

− logϕ(x) > log

[
1+

(
−ϕ
′′(0)
2
− hδ

)
x2

]
. (1.41)

But ∀z ∈ [0,1δ], 1δ < 1/2, there holds log(1+ z) > Qδz with

Qδ = 1− 1δ

2(1−1δ)2
> 0

and since(−ϕ′′(0)/2− hδ)x2 6 1δ ∀x ∈] − δ, δ[, inequality (1.41) can be replaced by

− logϕ(x) > Qδ

(
−ϕ
′′(0)
2
− hδ

)
x2

which implies

exp
[−γ log(− logϕ(x))

]
6
[
Qδ

(
−ϕ
′′(0)
2
− hδ

)]−γ 1

x2γ
. (1.42)

The appropriate bound forx ∈ [−1/2, 1/2]\] − δ, δ[ is much simpler

exp[−γ log(− logϕ(x))] 6 (− logHδ)
−γ . (1.43)

Recalling (1.38), inequality (1.42) can be rewritten as

exp{−γ log(− logρij )} 6
[
Qδ

(
−ϕ
′′(0)
2
− hδ

)]−γ
[dist(ai + bj,Z)]−2γ (1.44)

and with the obvious definition of the constantR > 0, condition (1.37) leads to the basic
upper bound

exp{−γ log(− logρij )} 6 R(i + j)2γ γa,b (1.45)

valid whenever dist(ai + bj,Z) < δ, whereas (1.43) applies to any other case.
Condition (1.30) of theorem 1.3 is certainly satisfied for any choice ofγ > 0 because
of the factor e−β(i+j), which proves item (a).

In an analogous way, in order to check the convergence of (1.30) forF(i) = i−β we
write
∞∑
ij=1

αij

iβjβ
exp{−γ log(− logρij )} 6 K(− logHδ)

−γ
[ ∞∑
i=1

1

iβ

]2

+
∞∑
ij=1

KR

iβjβ
(i + j)2γa,bγ .

(1.46)



Estimates to correlations by spectral methods 649

The first term on the right-hand side of (1.46) converges since, according to our hypotheses,
β > 2. As for the latter series, on havingxy > x+y ∀x, y > 2 we can achieve the estimate

∞∑
ij=1

1

iβjβ
(i + j)2γa,bγ = 4β

∞∑
ij=1

1

(2i · 2j)β (i + j)
2γa,bγ 6 2β

∞∑
ij=1

1

(i + j)β−2γa,bγ
(1.47)

convergent provided thatγ < (β − 2)/(2γa,b), where(β − 2)/(2γa,b) > 0. As a result,
for every γ ∈]0, (β − 2)/(2γa,b)[ theorem 1.3 can be applied. The proof of item (b) is
complete. �

2. Algebraic automorphisms and endomorphisms of then-torus Tn

In this section we apply spectral methods to estimating correlation decay in algebraic auto-
and endo-morphisms of then-torus. The results constitute a generalization of estimates
given in [20, 28] for the cat map [27]. They must not be simply considered as an immediate
application of the statements in section 1 (theorems 1.1 and 1.2, in particular). Nevertheless,
the general idea which allows one to prove the superexponential correlation decay of
analytical observables for the algebraic auto/endomorphisms of the torus is essentially the
same as that on which theorems 1.1 and 1.2 are based: the map induces a transformation
of the orthonormal set of characters onto itself, so that Fourier vectors ‘mix’ appropriately.
Here the situation is only a little more complicated and requires, as will be clear in the
following, a ‘pairwise’ treatment of the Fourier vectors in order to obtain the improved
estimates.

Preliminarily, we recall some basic definitions and introduce the notation which will
be used from now on. ByTn we denote then-dimensional torus, parametrized by the unit
cube [0, 1[n. As usual,Tn is intended to be equipped with the Lebesgue–Haar measure
µ on theσ -field B of Borel sets in [0, 1[n and takes the structure of a probability space.
The n-torus can also be thought of as the quotient of the wholeRn with respect to the
equivalence relation which defines as equivalent two elements ofRn whose coordinates in
the canonical base differ by integers. In this contextRn is also referred to as the covering
space of the torus. The covering mapx ′ = xmod [0, 1[n associates to anyx ∈ Rn its only
equivalent element within the unit cube. In what follows we will find it convenient to give
Rn a Banach space structure by introducing two different norms, the ordinary Euclidean
one‖x‖ = [

∑n
i=1 |xi |2]1/2 and the further norm‖ · ‖E defined later.

That being stated, let [M] be an arbitrary non-singularn × n matrix with integer
entries and consider the linear invertible transformationM of Rn onto itself having [M]
as representative matrix with respect to the canonical base. The mapsT of the n-torus
we study here are defined byT (x) = M(x)mod [0, 1[n ∀x ∈ Tn and always preserve the
Haar–Lebesgue measure onTn. [M] is known as the associated matrix ofT .

Whenever [M] ∈ SL(Z, n) a simple algebraic manipulation shows thatT is a one-to-one
map ofTn onto itself and that the probability measureµ is invariant for bothT andT −1.
The mapT is then called an algebraic toral automorphism onTn, some properties of which,
like ergodicity with respect to the invariant measureµ and hyperbolicity, are directly related
to the spectrum of [M] [14, 29]. Hyperbolicity ofT onTn is also equivalent to hyperbolicity
of the linear mappingM on the covering spaceRn [14]. The adjoint operatorM̃ of M
is hyperbolic onRn as well. Let us focus our attention oñM, which will be actually
involved in the estimates later. Hyperbolicity of̃M means that there exist two non-trivial
linear subspaces ofRn, Es andEu, and a positive constantν < 1 satisfying the following
properties:
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(i) Es ⊕Eu = Rn;
(ii) M̃(Es) = M̃−1(Es) = Es ; M̃(Eu) = M̃−1(Eu) = Eu;
(iii) k ∈ Es ⇒ ‖M̃mk 6 νm‖k‖ ∀m ∈ N; k ∈ Eu ⇒ ‖M̃−mk‖ 6 νm‖k‖ ∀m ∈ N.
Es is known as the stable space—or also the stable manifold of the only fixed point

0—whereasEu is the unstable space—or unstable manifold, respectively. Conditions (ii)
and (iii) lead to the further bounds

‖M̃−mk‖ > ν−m‖k‖ ∀k ∈ Es , m ∈ N
‖M̃mk‖ > ν−m‖k‖ ∀k ∈ Eu,m ∈ N.

(2.1)

Moreover, the decomposition (i) allows us to introduce another norm onRn, ‖ · ‖E , which
will be useful later. Since for everyk ∈ Rn there are a unique vectorks ∈ Es and a unique
ku ∈ Eu such thatk = ks + ku, the relationship below defines the desired norm

‖k‖E = ‖ks‖ + ‖ku‖ (2.2)

whose equivalence with respect to‖ · ‖ ensures the existence of constants3−E,3
+
E > 0 such

that

3−E‖k‖E 6 ‖k‖ 6 3+E‖k‖E ∀k ∈ Rn (2.3)

according to the definition of norm equivalence. Although any ergodic algebraic
automorphism ofTn is also strong mixing, so that forn > 4 there are non-hyperbolic
mixing automorphisms [30], our discussion about decay of correlations will be confined to
hyperbolic automorphisms only.

In contrast, as a simple algebraic investigation shows, the case| det[M]| = d 6= 1
corresponds to ad-to-one mapT of Tn onto itself which still preserves the Lebesgue
measure. It will be referred to as an algebraic toral endomorphism. Also in this non-
invertible hypothesisT satisfies a mixing property if and only if its associated matrix [M]
has no root of unity as an eigenvalue [14]. Nevertheless, we will confine ourselves to the
following cases only:

(a) algebraic toral endomorphisms whose tangent mapM is hyperbolic onRn;
(b) purely expanding algebraic toral endomorphisms.
The endomorphismT has hyperbolic tangent map if and only if all of the eigenvalues

of the associated matrix [M] lie outside the unit circle, but there are eigenvaluesλ+ and
λ− satisfying |λ+| > 1 and |λ−| < 1. Whenever any eigenvalue of [M] has modulus
greater than 1 we say that the endomorphism is purely expanding. Of course, both classes
of endomorphisms are mixing.

2.1. Analytic observables onTn

An observable onTn is any function of the linear spaceL2(Tn,B, µ) endowed with the
scalar product (0.1) and with the inducedL2-norm‖f ‖2 = (〈f |f 〉)1/2. We denote witha ·b
the usual inner product of vectorsa, b,∈ Rn, i.e. the sum

∑n
i=1 aibi whereai ∈ R stands

for the ith component ofa with respect to the canonical base. Charactersek(x) = ei2πk·x ,
k ∈ Zn, x ∈ Tn, provide a complete orthonormal set ofL2(Tn,B, µ), so that any observable
f can be expanded into the Fourier seriesf (x) = ∑

k∈Zn ck(f )ek(x), convergent with
respect to theL2-norm. Smooth or analytic observables can be regarded as periodic functions
on the covering spaceRn, of period 1 on each variablexi . The Dirichlet theorem ensures
the Fourier series to be convergent not only with respect to theL2-norm but also pointwise
on Tn. In both cases the regularity off implies a fast decay of Fourier coefficients as
‖k‖ → ∞. More precisely, it is well known that iff is analytic onTn there are constants
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α, β > 0 such that|ck(f )| 6 α e−β‖k‖ ∀k ∈ Zn, leading to an exponential decay of the
Fourier spectrum.

2.2. Decay of correlations for characters

The explicit computation of correlations for arbitrary observables is a formidable task from
an analytical and a numerical point of view, and can be performed successfully in some
special cases only [28, 31, 32]. The simplest result concerns correlations between characters
and is easily achieved by noting that the associated Koopman operator of an algebraic toral
auto- or endomorphism maps the latticeZn onto itself. We have in fact,∀k ∈ Zn, x ∈ Tn
and s ∈ N, the equality(Usek)(x) = ek(T s(x)) = ei2πk·T s(x), which in the covering space
also reads(Usek)(x) = ei2πk·Msx = ei2πM̃sk·x , on having introduced the adjoint operatorM̃
of M. As a consequence, for everyh, k ∈ Zn we get

〈eh|Usek〉 =
∫

[0,1[n
e−i2πh·x ei2πM̃sk·x dµ(x) = δh,M̃sk (2.2.1)

with δa,b = 1 if a = b andδa,b = 0 otherwise, for anya, b ∈ Zn. Equation (2.2.1) allows
to deduce estimates on the correlation decay of regular observables from the dynamical
properties of the linear mapping̃M on Zn.

2.3. Decay of correlations for analytic observables

In this section we prove that the correlation decay of any analytic observable onTn is
superexponential. More precisely we have the following theorem.

Theorem 2.1. Let T belong to one of the following classes of algebraic toral maps:
(a) hyperbolic automorphisms ofTn;
(b) endomorphisms ofTn with hyperbolic tangent map;
(c) purely expanding endomorphisms ofTn.
Then for any analytic observablef on Tn constantsA,B > 0 andR > 1 exist such

that

|Cs(f, f )| 6 A e−BR
s ∀s ∈ N (2.3.1)

with R dependent onT only. �

Proof. Let f be an arbitrary observable onTn ands ∈ N. By the continuity of the scalar
product and of the (unitary) Koopman operator with respect to theL2-norm we can write

〈f |Usf 〉 =
〈∑
h∈Zn

ch(f )eh|Us

[∑
k∈Zn

ck(f )ek

]〉
=

∑
h,k∈Zn

ch(f )ck(f )〈eh|Usek〉 (2.3.2)

and inserting (2.2.1) we obtain

〈f |Usf 〉 =
∑
h,k∈Zn

ch(f )ck(f )δh,M̃sk =
∑
k∈Zn

cM̃sk(f )ck(f ).

On the other hand, there also holds

〈f |1〉〈1|f 〉 = 〈f |e0〉〈e0|f 〉 = c0(f )c0(f )

and the correlation reduces to

Cs(f, f ) = 〈f |Usf 〉 − 〈f |1〉〈1|f 〉 =
∑

k∈Zn\{0}
cM̃sk(f )ck(f ).
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The fundamental upper bound to autocorrelations will then be|Cs(f, f )| 6∑
k∈Zn\{0} |cM̃sk(f )‖ck(f )|, provided that the series on the right-hand side converges. If

f is analytic its spectrum decays exponentially and the previous bound becomes

|Cs(f, f )| 6 α2
∑

k∈Zn\{0}
e−β(‖M̃

sk‖+‖k‖) (2.3.3)

for some constantsα, β > 0, so that the behaviour ons ∈ N of objects like‖k‖ + ‖M̃sk‖
is crucial in order to establish the desired estimates toCs(f, f ). To this end we discuss
separately cases (a), (b) and (c).

(a) Hyperbolic automorphisms. Suppose that the mapT is a hyperbolic automorphism
of Tn. This implies, in particular, that the linear transformationM defines a one-to-one
mapping of the latticeZn onto itself, and so does̃M. Let f be an analyticL2(Tn,B, µ)
function, for which therefore (2.3.3) holds, and suppose for simplicity that the indexs ∈ N
of the correlationCs(f, f ) is even. By introducing the change of variableh = M̃s/2k, the
bound (2.3.3) is put into the following equivalent form:

|Cs(f, f )| 6 α2
∑

h∈Zn\{0}
e−β(‖M̃

s/2h‖+‖M̃−s/2h‖). (2.3.4)

Recalling the definitions and notation concerning the hyperbolic structure ofM̃, we obtain

1

3E

(‖M̃s/2h‖ + ‖M̃−s/2h‖) > ‖M̃s/2hs + M̃s/2hu‖E + ‖M̃s/2hs + M̃−s/2hu‖E (2.3.5)

but sinceM̃s/2hs, M̃
−s/2hs ∈ Es andM̃s/2hu, M̃

−s/2hu ∈ Eu we can rewrite the right-hand
side as

‖M̃s/2hs‖ + ‖M̃s/2hu‖ + ‖M̃−s/2hs‖ + ‖M̃−s/2hu‖ > ν−s/2 1

3+E
‖h‖. (2.3.6)

As a conclusion‖M̃s/2h‖+‖M̃−s/2h‖ > ν−s/2‖h‖3−E/3+E . The case of odds ∈ N is treated
in a completely similar way, by posingh = M̃(s−1)/2k within (2.3.3), and the result reads
‖M̃(s+1)/2h‖ + ‖M̃−(s−1)/2h‖ > ν−(s−1)/2‖h‖3−E/3+E . We now simply replace into (2.3.4)
and conclude

|Cs(f, f )| 6 α2 e−ν
−bs/2cβ3−E/3

+
E

∑
h∈Zn\{0}

e−ν
−bs/2cβ(‖h‖−1)3−E/3

+
E ∀s ∈ N (2.3.7)

where bxc stands for the integer part ofx ∈ R and the residual series is bounded by a
constant independent ons.

(b) Endomorphisms with hyperbolic tangent map. This case can be treated like the
previous one. We only have to notice that now̃M defines a transformation ofRn which
is still one-to-one but not onto. As a consequenceM̃(Zn\{0}) ⊂ Zn\{0}. Consider, for
instance, a correlationCs(f, f ) with f analytic and evens ∈ N. By the change of variables
h = M̃s/2k, which is well defined, and due to the hyperbolic structure ofM̃, (2.3.3) can be
written as

|Cs(f, f )| 6 α2
∑

h∈M̃s/2(Zn\{0})
e−β(‖M̃

s/2h‖+‖M̃−s/2h‖). (2.3.8)

An analogous estimate holds for odds by introducing the change of variableh = M̃(s−1)/2k.
The same bounds on‖M̃−s/2h‖ + ‖M̃s/2h‖ and ‖M̃(s+1)/2h‖ + ‖M̃−(s−1)/2h‖ previously
established lead then to the inequality

|Cs(f, f )| 6 α2 e−ν
−bs/2cβ3−E/3

+
E

∑
h∈Zn\{0}

e−ν
−bs/2cβ(‖h‖−1)3−E/3

+
E ∀s ∈ N. (2.3.9)
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(c) Expanding endomorphisms. Expanding endomorphism means that all of the
eigenvalues of the adjoint operator̃M have modulus greater than 1. Therefore, a positive
constantν < 1 will exist such that‖M̃−1k‖ 6 ν‖k‖ ∀k ∈ Rn or, equivalently,‖M̃k‖ >
ν−1‖k ∀‖k ∈ Rn which implies, in particular,‖M̃sk‖+‖k‖ > ν−s‖k‖+‖k‖ = (ν−s+1)‖k‖.

The upper bound (2.3.3) for the autocorrelationCs(f, f ) of an analytic observablef
will be written, for eachs ∈ N and with no change of variables, as

|Cs(f, f )| 6 α2
∑

k∈Zn\{0}
e−β(ν

−s+1)‖k‖ = α2 e−β(ν
−s+1)

∑
k∈Zn\{0}

e−β(ν
−s+1)(‖k‖−1) (2.3.10)

with the usual bounded residual series. The proof is complete. �

Remark. In the particular situation that the complexification of the linear operatorM̃ can be
diagonalized onCn, a small modification of the previous discussion provides a more specific
characterization of the decay rates. For simplicity’s sake, let us denote with the same symbol
M̃ the complexification ofM̃. LetT be a hyperbolic automorphism and suppose then thatM̃

admits the baseU = {u1, u2, . . . , un} of eigenvectors onCn with corresponding—possibly
complex or coinciding—eigenvaluesλ1, λ2, . . . , λn, none of which lies on the unit circle.
Any vectorh ∈ Rn will be written in a unique way as

h =
n∑
i=1

ci(h)ui ci(h) ∈ C ∀i = 1, 2, . . . , n (2.3.11)

and a norm‖ · ‖u will be defined by‖h‖u =
∑n

i=1 |ci(h)|, equivalent to the Euclidean norm
‖ · ‖ on Rn according to3−u ‖h‖u 6 ‖h‖ 6 3+u ‖h‖u ∀h ∈ Rn, 3−u ,3+u > 0. We have

‖M̃s/2h‖ + ‖M̃−s/2h‖ > Inf
j

[|λj |s/2+ |λj |−s/2]
3−u
3+u
‖h‖ (2.3.12)

where Infj [|λj |s/2+|λj |−s/2] increases exponentially ass →+∞. An analogous calculation
holds for odds and provides

‖M̃(s+1)/2h‖ + ‖M̃−(s−1)/2h‖ > Inf
j

[|λj |1/2(|λj |s/2+ |λj |−s/2)]3
−
u

3+u
‖h‖ (2.3.13)

with the same conclusion. �

Since estimates (2.3.12) and (2.3.12) obviously extend to the case of an endomorphism
T with hyperbolic tangent map, the same characterization of decay rates also holds.

As for expanding endomorphisms, we can establish a very simple relation between the
computed expansion rateν−1 and the eigenvalues of the linear operator. Indeed by using
(2.3.11) we obtain

‖M̃sh‖ + ‖h‖ > 3−u (‖M̃sh‖ + ‖h‖u) > 3−u
3+u

([
Inf
j
|λj |

]s
+ 1

)
‖h‖ (2.3.14)

on having Infj |λj | > 1.
It is important to compare our estimates with those described in [16] for the cat map.

There the decay of correlations for analytic observables is characterized in a weaker way than
in the present work; correlation decay turns out to be more than exponential, whereas we can
state a more precise superexponential decay law. The systematic construction of observables
obeying a power-decay law, even if not explicitly explained here, can be performed as well
and so can be the estimate of correlation decay for smooth observables. Nevertheless,
if λ denotes the eigenvalue of̃M with modulus greater than one, the exponential decay
rate computable for aCq observable by the spectral methods presented here turns out to
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be q log |λ|/2, exactly one half the valueq log |λ| found in [16]. That better result is
not astonishing, since it lies on a very detailed characterization of the orbits ofM̃ on
the reciprocal latticeZ2, followed by an ingenious, suitable rearrangement of such orbits.
The extension of the same arguments to other algebraic automorphisms of the 2-torus
and to higher-dimensional auto- and endo-morphisms is certainly non-trivial and fairly
cumbersome, in spite of the simplicity and generality of the present analysis. In both cases,
the spectral method reveals its capability to provide a clear relation between smoothness of
the observable and estimated decay rate.

3. Skew-endomorphisms of the 2-torus with Bernoulli base

Spectral methods discussed in section 1, and in particular the kind of estimates used in the
proof of proposition 1.4, can be fruitfully applied to a class of skew-endomorphismsT of
the 2-torus defined by the relationship

T :

{
x ′ = pxmod [0, 1[

y ′ = y + ω + εxmod [0, 1[ ∀(x, y) ∈ [0, 1[2
(3.1)

wherep ∈ Z\{−1, 0, 1} andε, ω ∈ R. The 2-torus is parametrized by [0, 1[2 and endowed
with the invariant Lebesgue–Haar measureµ on theσ -field of Borel sets. For simplicity’s
sake, we will confine ourselves to the mixing—and actually exact [18]—case, which is
known to occur if and only ifε ∈ R\Q [17, 19]. The (complete) orthonormal set inL2 we
consider is the usual Fourier baseea,b = ei2π(ax+by) ∀(a, b) ∈ Z2 as in the previous case of
toral algebraic endomorphisms. We have the following results.

Theorem 3.1. Let ε ∈ R satisfy a Diophantine condition and letf : T2 −→ C be analytic
on T2. Then∀γ > 0 there exists a sequence(aγ,s)s∈N ⊂ R+ such that lims→+∞ aγ,s = 0
and

|Cs(f, f )| 6 aγ,ss−γ ∀s ∈ Z+. (3.2)

�

Theorem 3.2. Let f : T2 −→ C a Cr function on the 2-torus withr > 2 and ε a
Diophantine number∣∣∣∣ε − mq

∣∣∣∣−1

6 µε|q|γε ∀q ∈ Z\{0}, m ∈ Z. (3.3)

�

Then∀γ > 0 such thatr > b1+ γ (γε −1)c+1 there exists a sequence(aγ,s)s∈N ⊂ R+
for which lims→+∞ aγ,s = 0 and (3.2) holds.

Sketch of the proof. The core of the proof is a full characterization of correlation decay
between vectors of the orthonormal base [19]. By choosing two arbitrary characters,ea,b
andec,d , (a, b), (c, d) ∈ Z2, the correlationCs(ea,b, ec,d) at times ∈ N takes the form

Cs(ea,b, ec,d)=δb,d eiπ(2ω+ε)ds(−1)c+ap
sin[πc + 1

2φs ]

πc + 1
2φs

s∏
j=0

sin( 1
2pφj )

p sin( 1
2φj )
−δa,0δb,0δc,0δd,0 (3.4)

whereφj = 2π [εd(p− 1)−1− (a + εd(p− 1)−1)p−j ] and the real functionsx → sinx/x,
x → sin(px)/(px) are also defined atx = 0 by continuity.
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It is then straightforward to verify that wheneverε is irrational andb 6= 0 the above
correlations decay at an exponential rate, on having asymptotically ins

|〈ea,b|Usec,b〉| ∼
[

sin

(
πp

εb

p − 1

)]s [
p sin

(
π

εb

p − 1

)]−s
. (3.5)

The decay rate approaches the critical value 1 when the distance ofεb/(p−1) from Z tends
to zero. All of the above features combine to provide the proof, which works like that of
proposition 1.4. For a (even too) detailed proof and further analytical and numerical results
about this three-parameter family of skew-endomorphisms we refer the reader to [19, 20].

�

4. Conclusions

For hyperbolic systems, spectral methods allow one to establish a relationship between the
smoothness of the observable and its own (sometimes even superexponential) decay rate. In
contrast, general techniques of symbolic dynamics foresee only an exponential decay rate
which is independent of the smoothness of the observables and usually difficult to relate
to the parameters of the map. Symbolic dynamics techniques are based on approximations
of the observables by means of piecewise constant functions on the cylindrical sets of
the associated Markov partition. The error introduced by this first approximation is
exponentially small with respect tos ∈ N by assuming the additional requirement that
observables be Ḧolder continuous.Ck, k ∈ Z+, or Cω observables are certainly Hölder
continuous, as Lipschitz continuous, but the estimate of the approximation error carries no
trace of such a regularity. As a conclusion, spectral techniques, even if by paying the price
of a lesser generality, offer the twofold advantage of a rather strict relation between the
estimated decay rate and the smoothness of the observables, on the one hand, and between
the decay rate and the system parameters on the other.

As for non-hyperbolic systems, a domain where general methods of symbolic dynamics
are not available, spectral techniques can also provide quite satisfactory estimates to
correlation decay of analytic or sufficiently smooth observables.
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